Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
BMC Biol ; 21(1): 36, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2255691

ABSTRACT

BACKGROUND: Cellular entry of SARS-CoV-2 has been shown to rely on angiotensin-converting enzyme 2 (ACE2) receptors, whose expression in the testis is among the highest in the body. Additionally, the risk of mortality seems higher among male COVID-19 patients, and though much has been published since the first cases of COVID-19, there remain unanswered questions regarding SARS-CoV-2 impact on testes and potential consequences for reproductive health. We investigated testicular alterations in non-vaccinated deceased COVID-19-patients, the precise location of the virus, its replicative activity, and the immune, vascular, and molecular fluctuations involved in the pathogenesis. RESULTS: We found that SARS-CoV-2 testicular tropism is higher than previously thought and that reliable viral detection in the testis requires sensitive nanosensors or RT-qPCR using a specific methodology. Through an in vitro experiment exposing VERO cells to testicular macerates, we observed viral content in all samples, and the subgenomic RNA's presence reinforced the replicative activity of SARS-CoV-2 in testes of the severe COVID-19 patients. The cellular structures and viral particles, observed by transmission electron microscopy, indicated that macrophages and spermatogonial cells are the main SARS-CoV-2 lodging sites, where new virions form inside the endoplasmic reticulum Golgi intermediate complex. Moreover, we showed infiltrative infected monocytes migrating into the testicular parenchyma. SARS-CoV-2 maintains its replicative and infective abilities long after the patient's infection. Further, we demonstrated high levels of angiotensin II and activated immune cells in the testes of deceased patients. The infected testes show thickening of the tunica propria, germ cell apoptosis, Sertoli cell barrier loss, evident hemorrhage, angiogenesis, Leydig cell inhibition, inflammation, and fibrosis. CONCLUSIONS: Our findings indicate that high angiotensin II levels and activation of mast cells and macrophages may be critical for testicular pathogenesis. Importantly, our findings suggest that patients who become critically ill may exhibit severe alterations and harbor the active virus in the testes.


Subject(s)
COVID-19 , Testis , Viral Tropism , Animals , Humans , Male , Angiotensin II/metabolism , Chlorocebus aethiops , COVID-19/pathology , SARS-CoV-2 , Testis/immunology , Testis/virology , Vero Cells
2.
Biochemistry (Mosc) ; 86(4): 389-396, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-2078751

ABSTRACT

The novel coronavirus disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health emergency worldwide with over 118.27-million confirmed COVID-19 cases and 2.62-million deaths recorded, as of March 12, 2021. Although this disease primarily targets lungs, damages in other organs, such as heart, kidney, liver, and testis, may occur. Testis is the cornerstone of male reproduction, while reproductive health is the most valuable resource for continuity of the human race. Given the unique nature of SARS-CoV-2, the mechanisms of its impact on the testes have yet to be fully explored. Notably, coronaviruses have been found to invade target cells through the angiotensin-converting enzyme 2 receptor, which can be found in the respiratory, gastrointestinal, cardiovascular, urinary tract, and reproductive organs, such as testes. Coronavirus studies have suggested that testes might be a potential target for SARS-CoV-2 infection. The first etiopathogenic concept proposed by current hypotheses indicates that the virus can invade testes through the angiotensin-converting enzyme 2 receptor. Next, the activated inflammatory response in the testes, disease-associated fever, and COVID-19 medications might be implicated in testicular alterations. Although evidence regarding the presence of SARS-CoV-2 mRNA in semen remains controversial, this emphasizes the need for researchers to pay closer attention to sexually transmitted diseases and male fertility after recovering from COVID-19. In this review the latest updates regarding COVID-19-associated testicular dysfunction are summarized and possible pathogenic mechanisms are discussed.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Fertility , Pandemics , SARS-CoV-2/metabolism , Testis/metabolism , COVID-19/mortality , COVID-19/pathology , Humans , Male , Testis/pathology , Testis/virology
3.
Front Endocrinol (Lausanne) ; 12: 788321, 2021.
Article in English | MEDLINE | ID: covidwho-1566648

ABSTRACT

Since the outbreak of the COVID-19, up to now, infection cases have been continuously rising to over 200 million around the world. Male bias in morbidity and mortality has emerged in the COVID-19 pandemic. The infection of SARS-CoV-2 has been reported to cause the impairment of multiple organs that highly express the viral receptor angiotensin-converting enzyme 2 (ACE2), including lung, kidney, and testis. Adverse effects on the male reproductive system, such as infertility and sexual dysfunction, have been associated with COVID-19. This causes a rising concern among couples intending to have a conception or who need assisted reproduction. To date, a body of studies explored the impact of SARS-CoV-2 on male reproduction from different aspects. This review aims to provide a panoramic view to understand the effect of the virus on male reproduction and a new perspective of further research for reproductive clinicians and scientists.


Subject(s)
COVID-19/physiopathology , SARS-CoV-2/physiology , Testis/physiopathology , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Humans , Male , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Reproduction , SARS-CoV-2/genetics , Testis/virology
4.
Andrology ; 9(1): 39-41, 2021 01.
Article in English | MEDLINE | ID: covidwho-1388168

ABSTRACT

BACKGROUND: The recent report of SARS-CoV-2 presence in semen samples of six patients, including two subjects who were recovering from the clinical disease, re-opened the discussion on possible male genital tract infection, virus shedding in semen, sexual transmission and safety of fertility treatments during the pandemic period. OBJECTIVES: To explore current data and hypothesis on the possible sites of SARS-CoV-2 infection in the male reproduction system. MATERIALS AND METHODS: We reviewed the current literature to describe: a) the evidences on angiotensin-converting enzyme 2 (AC2E) and transmembrane serine protease 2 (TMPRSS2) expression in the testes, accessory glands (including prostate) and the urinary tract; b) other coronaviruses' (SARS and MERS) ability to infect these sites. RESULTS: The co-expression of both ACE2 and TMPRSS2 genes was reported in spermatogonial stem cells, elongated spermatids, in at least a small percentage of prostate hillock cells and in renal tubular cells. Testicular damage was described in autopsies of SARS patients, without evidence of the virus in the specimens. Prostate is a known infection site for MERS-CoV. SARS-CoV-2 was detected in urines. DISCUSSION: There are still al lot of open questions on the effects of SARS-CoV-2 infection on the male reproductive tract. The presence of receptors is not a proof that the testis provides a site for viral infection and it is still unknown if SARS-CoV-2 is capable to pass the blood-testis barrier. The possibility of a prostate involvement has not been investigated yet: we have no data, but theoretically it cannot be excluded. Moreover, the RNA detected in semen could have been just a residual of urinary shedding. CONCLUSION: Opening our prospective beyond the testis could be the key to better understand the possibility of a semen-related viral transmission as well as COVID19 short and long-term effects on male reproductive function.


Subject(s)
COVID-19/virology , SARS-CoV-2/isolation & purification , Semen/virology , Testis/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/metabolism , COVID-19/transmission , Humans , Male , Receptors, Virus/metabolism , Serine Endopeptidases/metabolism , Testis/metabolism , Testis/pathology , Virus Internalization , Virus Shedding
6.
Immunity ; 54(9): 2143-2158.e15, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1364125

ABSTRACT

Neutralizing antibodies (NAbs) are effective in treating COVID-19, but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment during prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. Real-time imaging revealed that the virus spread sequentially from the nasal cavity to the lungs in mice and thereafter systemically to various organs including the brain, culminating in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct neutralization, depletion studies indicated that Fc effector interactions of NAbs with monocytes, neutrophils, and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Brain/pathology , COVID-19/immunology , Lung/pathology , SARS-CoV-2/physiology , Testis/pathology , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Brain/virology , COVID-19/therapy , Cells, Cultured , Disease Models, Animal , Humans , Immunoglobulin Fc Fragments/genetics , Luciferases/genetics , Luminescent Measurements , Lung/virology , Male , Mice , Mice, Transgenic , Testis/virology
7.
PLoS One ; 16(7): e0254540, 2021.
Article in English | MEDLINE | ID: covidwho-1309963

ABSTRACT

Coronaviruses (CoVs) are a family of viruses that are best known as the causative agents of human diseases like the common cold, Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS) and COVID-19. CoVs spread by human-to-human transmission via droplets or direct contact. There is, however, concern about potential waterborne transmission of SARS-CoV-2, the virus responsible for COVID-19, as it has been found in wastewater facilities and rivers. To date, little is known about the stability of SARS-CoV-2 or any other free coronavirus in aquatic environments. The inactivation of terrestrial CoVs in seawater is rarely studied. Here, we use a porcine respiratory coronavirus (PRCV) that is commonly found in animal husbandry as a surrogate to study the stability of CoVs in natural water. A series of experiments were conducted in which PRCV (strain 91V44) was added to filtered and unfiltered fresh- and saltwater taken from the river Scheldt and the North Sea. Virus titres were then measured by TCID50-assays using swine testicle cell cultures after various incubation times. The results show that viral inactivation of PRCV in filtered seawater can be rapid, with an observed 99% decline in the viral load after just two days, which may depend on temperature and the total suspended matter concentration. PRCV degraded much slower in filtered water from the river Scheldt, taking over 15 days to decline by 99%, which was somewhat faster than the PBS control treatment (T99 = 19.2 days). Overall, the results suggest that terrestrial CoVs are not likely to accumulate in marine environments. Studies into potential interactions with exudates (proteases, nucleases) from the microbial food web are, however, recommended.


Subject(s)
Coronavirus Infections/transmission , Porcine Respiratory Coronavirus/isolation & purification , Testis/cytology , Wastewater/virology , Animals , Cells, Cultured , Filtration , Male , Pilot Projects , Porcine Respiratory Coronavirus/pathogenicity , Rivers/virology , Swine , Testis/virology , Time Factors , Viral Load , Water Microbiology
8.
J Endocrinol Invest ; 45(1): 209-214, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1287473

ABSTRACT

PURPOSE: The SARS-CoV-2 genome has been detected in a variety of human samples including blood, urine, semen, and faeces. However, evidence of virus presence in tissues other than lung are limited. METHODS: We investigated whether SARS-CoV-2 could be detected in 50 autoptic specimens of endocrine organs from 29 patients who died of COVID-19. RESULTS: The virus was detected in 25 specimens including ten abdominal subcutaneous adipose tissue samples (62%), six testes (67%), and nine thyroid (36%) samples. The analysis of multiple endocrine organ samples obtained from the same patients showed that, in virus-positive cases, the viral genome was consistently detected in all but two matched specimens. CONCLUSION: Our findings show that the virus spread into endocrine organs is a common event in severe cases. Further studies should assess the rate of the phenomenon in clinically mild cases. The potential long-term effects of COVID-19 on endocrine functions should be taken into consideration.


Subject(s)
COVID-19/virology , Endocrine Glands/virology , SARS-CoV-2/isolation & purification , Abdominal Fat/virology , Adult , Autopsy , COVID-19/epidemiology , Comorbidity , Female , Humans , Lung/virology , Male , Middle Aged , RNA, Viral/analysis , SARS-CoV-2/genetics , Subcutaneous Fat/virology , Testis/virology , Thyroid Gland/virology
9.
Cells ; 10(6)2021 06 12.
Article in English | MEDLINE | ID: covidwho-1270010

ABSTRACT

Coronavirus disease 2019 (COVID-19), a global pandemic, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2) is the receptor for SARS-CoV-2 and transmembrane serine protease 2 (TMPRSS2) facilitates ACE2-mediated virus entry. Moreover, the expression of ACE2 in the testes of infertile men is higher than normal, which indicates that infertile men may be susceptible to be infected and SARS-CoV-2 may cause reproductive disorder through the pathway induced by ACE2 and TMPRSS2. Little is known about the pathway regulation of ACE2 and TMPRSS2 expression in male reproductive disorder. Since the regulation of gene expression is mediated by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) at the post-transcriptional level, the aim of this study was to analyze the dysregulated miRNA-lncRNA interactions of ACE2 and TMPRSS2 in male reproductive disorder. Using bioinformatics analysis, we speculate that the predicted miRNAs including miR-125a-5p, miR-125b-5p, miR-574-5p, and miR-936 as regulators of ACE2 and miR-204-5p as a modulator of TMPRSS2 are associated with male infertility. The lncRNAs with a tissue-specific expression for testis including GRM7-AS3, ARHGAP26-AS1, BSN-AS1, KRBOX1-AS1, CACNA1C-IT3, AC012361.1, FGF14-IT1, AC012494.1, and GS1-24F4.2 were predicted. The identified miRNAs and lncRNAs are proposed as potential biomarkers to study the possible association between COVID-19 and male infertility. This study encourages further studies of miRNA-lncRNA interactions to explain the molecular mechanisms of male infertility in COVID-19 patients.


Subject(s)
COVID-19/complications , Gene Regulatory Networks , Infertility, Male/virology , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Adult , Angiotensin-Converting Enzyme 2/physiology , COVID-19/genetics , Computational Biology/methods , Computer Simulation , Gene-Environment Interaction , Humans , Infertility, Male/genetics , Male , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/physiology , Testis/metabolism , Testis/pathology , Testis/virology , Virus Internalization
10.
Front Endocrinol (Lausanne) ; 12: 677701, 2021.
Article in English | MEDLINE | ID: covidwho-1268244

ABSTRACT

Background: Angiotensin-converting enzyme II (ACE2), a receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) to enter host cells, is widely expressed in testes and prostate tissues. The testis and prostate produce semen. At present, there are contradictory reports about whether SARS-CoV-2 can exist in the semen of infected men. Objective: To provide a comprehensive overview of the topic of whether COVID-19 can impact on male reproductive system. Methods: We reviewed the relevant publications on the possible impact of Coronavirus Disease 2019 (COVID-19) on male reproductive system and summarized the latest and most important research results so far. Literature published in English from December 2019 to January 31, 2021 regarding the existence of SARS-CoV-2 in semen, testis, and prostatic fluid and the effects of COVID-19 on male reproductive were included. Results: We identified 28 related studies, only one of which reported the presence of SARS-CoV-2 in semen. The study found that the semen quality of patients with moderate infection was lower than that of patients with mild infection and healthy controls. The impaired semen quality may be related to fever and inflammation. Pathological analysis of the testis/epididymis showed that SARS-CoV-2 viral particles were positive in 10 testicular samples, and the spermatogenic function of the testis was impaired. All 94 expressed prostatic secretion (EPS) samples were negative for SARS-CoV-2 RNA. Conclusion: The likelihood of SARS-CoV-2 in the semen of COVID-19 patients is very small, and semen should rarely be regarded as a carrier of SARS-CoV-2 genetic material. However, COVID-19 may cause testicular spermatogenic dysfunction via immune or inflammatory reactions. Long-term follow-up is needed for COVID-19 male patients and fetuses conceived during the father's infection period.


Subject(s)
COVID-19/physiopathology , Genitalia, Male/virology , SARS-CoV-2/physiology , COVID-19/complications , COVID-19/pathology , Genitalia, Male/pathology , Genitalia, Male/physiology , History, 21st Century , Humans , Inflammation/complications , Inflammation/pathology , Inflammation/virology , Male , Prostate/pathology , Prostate/physiology , Prostate/virology , Semen/virology , Semen Analysis , Sexual Dysfunction, Physiological/pathology , Sexual Dysfunction, Physiological/virology , Testis/pathology , Testis/physiology , Testis/virology
11.
Apoptosis ; 26(7-8): 415-430, 2021 08.
Article in English | MEDLINE | ID: covidwho-1252148

ABSTRACT

To evaluate the incidence of apoptosis within the testes of patients who died from severe acute respiratory syndrome coronavirus 2 (COVID-19) complications, testis tissue was collected from autopsies of COVID-19 positive (n = 6) and negative men (n = 6). They were then taken for histopathological experiments, and RNA extraction, to examine the expression of angiotensin-converting enzyme 2 (ACE2), transmembrane protease, serine 2 (TMPRSS2), BAX, BCL2 and Caspase3 genes. Reactive oxygen species (ROS) production and glutathione disulfide (GSH) activity were also thoroughly examined. Autopsied testicular specimens of COVID-19 showed that COVID-19 infection significantly decreased the seminiferous tubule length, interstitial tissue and seminiferous tubule volume, as well as the number of testicular cells. An analysis of the results showed that the Johnsen expressed a reduction in the COVID-19 group when compared to the control group. Our data showed that the expression of ACE2, BAX and Caspase3 were remarkably increased as well as a decrease in the expression of BCL2 in COVID-19 cases. Although, no significant difference was found for TMPRSS2. Furthermore, the results signified an increase in the formation of ROS and suppression of the GSH activity as oxidative stress biomarkers. The results of immunohistochemistry and TUNEL assay showed that the expression of ACE2 and the number of apoptotic cells significantly increased in the COVID-19 group. Overall, this study suggests that COVID-19 infection causes spermatogenesis disruption, probably through the oxidative stress pathway and subsequently induces apoptosis.


Subject(s)
COVID-19/complications , Oxidative Stress/physiology , SARS-CoV-2/pathogenicity , Spermatogenesis/physiology , Testis/virology , Apoptosis , Humans , Male , Middle Aged , Reactive Oxygen Species/metabolism , Serine Endopeptidases/metabolism , Testis/metabolism
12.
Arch Ital Urol Androl ; 93(1): 48-52, 2021 Mar 18.
Article in English | MEDLINE | ID: covidwho-1146497

ABSTRACT

INTRODUCTION: Severe Acute Respiratory Syndrome Coronavirus 2, (SARS-CoV-2) was first identified by the Chinese Centers for Disease Control and Prevention on January 8, 2020 and was declared as a global pandemic on March 11, 2020 by WHO. SARS-CoV-2 uses the Angiotensin-converting enzyme 2 (ACE2) receptor as an entry route, associated with the transmembrane serine protease protein (TMPRSS2), which makes the testis and particularly spermatogenesis potentially vulnerable, since this tissue has high expression of ACE2. MATERIAL AND METHODS: We performed a systematic literature review by electronic bibliographic databases in Pubmed, Scopus and ScienceDirect up to August 2020 about the effect of SARS-CoV-2 on male sexual function and its transmission, to assess possible repercussions on sex organs and the existence of a sexual transmission path. RESULTS: Although SARS-CoV-2 presence has not been found in testicle samples, it has been demonstrated that it causes histological changes compatible with orchitis, and sex hormone disturbances. TMPRSS2 is up-regulated in prostate cancer where it supports tumor progression, thus these patients may have a higher risk of SARS-CoV-2 infection. TMPRSS2 inhibitors may be useful for the treatment or prevention of COVID-19. No viral material has been found in blood or semen, however it has been proven to be present in stool and saliva. CONCLUSION: The male reproductive system would be highly vulnerable and susceptible to infection by SARS-CoV-2 given the expression of the ACE2 receptor in somatic and germ cells. The seminal fluid would remain free of viral presence in patients with COVID-19. Regardless, non-genital sex could be an important source of viral transmission. In assisted reproduction techniques all necessary tests must be carried out to ensure the donor is free of the virus at the time of collection and handling of the seminal sample.


Subject(s)
COVID-19/complications , COVID-19/transmission , Sexual Dysfunction, Physiological/etiology , Sexually Transmitted Diseases, Viral/transmission , Humans , Male , Sexual Dysfunction, Physiological/therapy , Testis/virology
13.
Andrologia ; 53(1): e13914, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1087946

ABSTRACT

COVID-19 pandemic leads to health challenges globally, and its diverse aspects need to be uncovered. Multi-organ injuries have been reported by describing potential SARS-CoV-2 entrance routes: ACE2 and TMPRSS2. Since these cell surface receptors' expression has been disclosed within the male reproductive system, its susceptibility to being infected by SARS-CoV-2 has been summarised through this literature review. Expression of ACE2 and TMPRSS2 at RNA or protein level has been reported across various investigations indicates that the male genitalia potentially is vulnerable to SARS-CoV-2 infection. Presence of SARS-CoV-2 within semen samples and following direct viral damage, secondary inflammatory response causing orchitis or testicular discomfort and finally the amount of viral load leading testicular damage and immune response activation are among probable underlying mechanisms. Therefore, genital examination and laboratory tests should be considered to address the male reproductive tract complications and fertility issues.


Subject(s)
COVID-19/virology , Genitalia, Male/virology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Genitalia, Male/enzymology , Humans , Infertility, Male/virology , Male , Orchitis/virology , RNA, Messenger/analysis , SARS-CoV-2/isolation & purification , Semen/virology , Serine Endopeptidases/genetics , Serine Endopeptidases/physiology , Spike Glycoprotein, Coronavirus/metabolism , Testis/enzymology , Testis/virology
14.
Andrologia ; 53(1): e13883, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1087944

ABSTRACT

The novel coronavirus was recognised in December 2019 and caught humanity off guard. The virus employs the angiotensin-converting enzyme 2 (ACE2) receptor for entry into human cells. ACE2 is expressed on different organs, which is raising concern as to whether these organs can be infected by the virus or not. The testis appears to be an organ enriched with levels of ACE2, while the possible mechanisms of involvement of the male reproductive system by SARS-CoV-2 are not fully elucidated. The major focus of the present studies is on the short-term complications of the coronavirus and gains importance on studying the long-term effects, including the possible effects of the virus on the male reproductive system. The aim of this review was to provide new insights into different possible mechanisms of involvement of male gonads with SARS-CoV-2 including investigating the ACE2 axis in testis, hormonal alterations in patients with COVID-19, possible formation of anti-sperm antibodies (ASA) and subsequently immunological infertility as a complication of SARS-CoV-2 infection. Finally, we suggest measuring the sperm DNA fragmentation index (DFI) as a determiner of male fertility impairment in patients with COVID-19 along with other options such as sex-related hormones and semen analysis. Invasion of SARS-CoV-2 to the spermatogonia, Leydig cells and Sertoli cells can lead to sex hormonal alteration and impaired gonadal function. Once infected, changes in ACE2 signalling pathways followed by oxidative stress and inflammation could cause spermatogenesis failure, abnormal sperm motility, DNA fragmentation and male infertility.


Subject(s)
COVID-19/complications , Infertility, Male/virology , SARS-CoV-2/physiology , Testis/virology , Androgens/blood , Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/physiology , Autoantibodies/blood , COVID-19/physiopathology , COVID-19/virology , DNA Fragmentation , Gonadotropins/blood , Humans , Infertility, Male/diagnosis , Infertility, Male/physiopathology , Male , Orchitis/virology , Oxidative Stress , Spermatozoa/chemistry , Spermatozoa/enzymology , Spermatozoa/immunology , Testis/enzymology , Testis/physiopathology
15.
Andrology ; 9(4): 1027-1037, 2021 07.
Article in English | MEDLINE | ID: covidwho-1066607

ABSTRACT

BACKGROUND: The testes are suspected target organs of SARS-CoV-2. However, the results of studies on the effect of COVID-19 on male reproduction are controversial. OBJECTIVE: To summarize current research on the effects of COVID-19 on male reproduction. METHODS: A systematic review of English literature was performed using PubMed and Ovid Embase up to 18 August 2020. Research articles on the presence of SARS-CoV-2 in semen, the effects of the virus on semen parameters and any pathological changes in the testes were evaluated. RESULTS: Fourteen studies were included in this review. Six of 176 survivors (3.4%) and 1 of 13 decedents (7.7%) in 2 of 12 studies were positive for viral RNA in semen and testicular tissue, respectively. After stratification of patient groups, we found that the virus was detected in the relatively early stage of infection, 6-16 days after disease onset, in semen from survivors. Two of 3 studies reported that some participants had substandard semen quality after COVID-19, and 1 study found that COVID-19 may impair semen quality in a severity-related manner. Pathological analyses showed that injuries to the seminiferous tubule occurred in all decedents (N = 11). Another study found that orchitic and testis fibrin microthrombi occurred in patients with fatal disease (100%, N = 2). Scrotal discomfort of orchiepididymitis or spermatic cord inflammation has also been reported in COVID-19 patients. CONCLUSION: Current studies suggest that semen is rarely considered a carrier of SARS-CoV-2 genetic material during the infection period but not in the semen of recovered patients. Fatal COVID-19 may cause testicular structure damage without the presence of virus.


Subject(s)
COVID-19/physiopathology , Reproduction , Semen/virology , COVID-19/pathology , COVID-19/virology , Humans , Male , Semen Analysis , Seminiferous Tubules/pathology , Seminiferous Tubules/virology , Testis/pathology , Testis/virology
16.
Stem Cell Res ; 52: 102189, 2021 04.
Article in English | MEDLINE | ID: covidwho-1062597

ABSTRACT

Since the emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in December 2019, it has rapidly spread across many countries and it has become a crucial global health concern. Furthermore, SARS-CoV-2 infection not only effect on respiratory system, but on reproductive system of human. However, there has been not any review described the transmission paths and effects of SARS-CoV-2 infection on human reproductive system, systematically. In order to describe the transmission paths of SARS-CoV-2, effect on the male/female reproductive system of SARS-CoV-2 and some successful prevention measures. We would like to review effect of SARS-CoV-2 on reproductive system. To conclude, SARS-CoV-2 infection might damage to male reproductive system via ACE2 receptor mediating and male patients were reportedly slightly more affected than women by SARS-CoV-2 infections.


Subject(s)
COVID-19/complications , Genitalia/virology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Female , Genital Diseases, Female/virology , Genital Diseases, Male/virology , Global Health , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Male , Ovary/virology , Pregnancy , Semen/virology , Sex Factors , Testis/virology , Uterus/virology
17.
Reproduction ; 161(2): R37-R44, 2021 02.
Article in English | MEDLINE | ID: covidwho-1024433

ABSTRACT

Invasion or damage of the male reproductive system is one of the reported outcomes of viral infection. Current studies have documented that SARS-CoV-2, which causes COVID-19, can damage the male reproductive system in large part by inflammatory damage caused by a cytokine storm. However, whether SARS-CoV-2 can infect the human testis directly and enter semen is controversial. Other adverse effects of SARS-CoV-2 on male reproduction are also of concern and require comprehensive evaluation. Here, we analyze the invasiveness of SARS-CoV-2 in the testis and examine reported mechanisms by which SARS-CoV-2 interferes with male reproduction. Long-term implications of SARS-CoV-2 infection on male reproduction are also discussed. It should be emphasized that although COVID-19 may induce testicular damage, a substantial decrease in male reproductive capacity awaits clinical evidence. We propose that there is an urgent need to track male COVID-19 patients during their recovery. The development of suitable experimental models, including human reproductive organoids, will be valuable to further investigate the viral impact on reproduction for current and future pandemics.


Subject(s)
COVID-19/complications , Reproduction , SARS-CoV-2 , Testis/virology , Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/physiology , COVID-19/physiopathology , COVID-19/transmission , Cytokines/blood , Humans , Hypothalamo-Hypophyseal System/physiopathology , Infertility, Male/virology , Male , Orchitis/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spermatogenesis , Spermatozoa/virology , Testis/chemistry , Testis/physiopathology
18.
Reprod Sci ; 28(10): 2735-2742, 2021 10.
Article in English | MEDLINE | ID: covidwho-1014275

ABSTRACT

Coronavirus disease 2019 (COVID-19), which resulted from the pandemic outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes a massive inflammatory cytokine storm leading to multi-organ damage including that of the brain and testes. While the lungs, heart, and brain are identified as the main targets of SARS-CoV-2-mediated pathogenesis, reports on its testicular infections have been a subject of debate. The brain and testes are physiologically synchronized by the action of gonadotropins and sex steroid hormones. Though the evidence for the presence of the viral particles in the testicular biopsies and semen samples from COVID-19 patients are highly limited, the occurrence of testicular pathology due to abrupt inflammatory responses and hyperthermia has incresingly been evident. The reduced level of testosterone production in COVID-19 is associated with altered secretion of gonadotropins. Moreover, hypothalamic pathology which results from SARS-CoV-2 infection of the brain is also evident in COVID-19 cases. This article revisits and supports the key reports on testicular abnormalities and pathological signatures in the hypothalamus of COVID-19 patients and emphasizes that testicular pathology resulting from inflammation and oxidative stress might lead to infertility in a significant portion of COVID-19 survivors. Further investigations are required to monitor the reproductive health parameters and HPG axis abnormalities related to secondary pathological complications in COVID-19 patients and survivors.


Subject(s)
COVID-19/epidemiology , Fertility , Hypothalamus/pathology , Infertility, Male/epidemiology , SARS-CoV-2/pathogenicity , Testis/pathology , Animals , Atrophy , COVID-19/diagnosis , COVID-19/virology , Gonadotropins/metabolism , Host-Pathogen Interactions , Humans , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/pathology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamo-Hypophyseal System/virology , Hypothalamus/metabolism , Hypothalamus/physiopathology , Hypothalamus/virology , Incidence , Infertility, Male/pathology , Infertility, Male/physiopathology , Infertility, Male/virology , Male , Testis/metabolism , Testis/physiopathology , Testis/virology , Testosterone/metabolism
19.
Endocr Metab Immune Disord Drug Targets ; 21(9): 1544-1554, 2021.
Article in English | MEDLINE | ID: covidwho-1004558

ABSTRACT

The novel pandemic of Coronavirus disease 2019 (COVID-19) has become a public health issue since March 2020, with more than 30 million people found to be infected worldwide. Men may be considered to be at a higher risk of poor prognosis or death once the infection occurred. Concerns surfaced regarding the risk of a possible testicular injury due to SARS-CoV-2 infection. Several data support the existence of a bivalent role of testosterone (T) in driving poor prognosis in patients with COVID-19. On the one hand, this is attributable to the fact that T may facilitate SARS-CoV-2 entry in human cells by means of an enhanced expression of transmembrane serine-protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2). At the same time, a younger man with normal testicular function compared to a woman of similar age is prone to develop a blunted immune response against SARS-CoV-2, being exposed to less viral clearance and more viral shedding and systemic spread of the disease. Conversely, low levels of serum T observed in hypogonadal men predispose them to a greater background systemic inflammation, cardiovascular and metabolic diseases, and immune system dysfunction, hence driving harmful consequences once SARS-CoV-2 infection occurred. Finally, SARS-CoV-2, as a systemic disease, may also affect testicles with possible concerns for current and future testicular efficiency. Preliminary data suggested that the SARS-CoV-2 genome is not normally found in gonads and gametes. Therefore, transmission through sex could be excluded as a possible way to spread the COVID-19. Most data support a role of T as a bivalent risk factor for poor prognosis (high/normal in younger; lower in elderly) in COVID-19. However, the impact of medical treatment aimed to modify T homeostasis for improving the prognosis of affected patients is unknown in this clinical setting. In addition, testicular damage may be a harmful consequence of the infection, even if it occurred asymptomatically. Still, no long-term evidence is currently available to confirm and quantify this phenomenon. Different authors excluded the presence of SARS-CoV-2 in sperm and oocytes, thus limiting worries about both a potential sexual and gamete-to-embryos transmission of COVID-19. Despite these evidence, long-term and well-designed studies are needed to clarify these issues.


Subject(s)
COVID-19/physiopathology , Sex Factors , Testosterone/blood , Humans , Male , Pandemics , Risk Factors , Testis/virology
SELECTION OF CITATIONS
SEARCH DETAIL